
Recurrent Neural Networks (RNN)
Introduction
Humans don’t start their thinking from scratch every second. As you read this text, you understand each word
based on your understanding of previous words. You don’t throw everything away and start thinking from
scratch again. Your thoughts have persistence.

Traditional neural networks can’t do this , and it seems like a major shortcoming. For example, imagine you want to
classify what kind of event is happening at every point in a movie. It’s unclear how a traditional neural network
could use its reasoning about previous events in the film to inform later ones.

Recurrent neural networks address this issue, allowing information to persist.

In the above diagram, just one neural network cell, A , is depicted. It looks at some input x_t and outputs a value
h_t . In addition the that an RNN allows to loop information and therefore be passed from one step of the
network to the next.

The intuitive general processing equation for an RNN looks the following:

Note, that it looks the same as in the "standard" Feedforward (FFNN) case except that the output is also a
function of some previous cell state/output . Therefore you can think of RNN as a more general network
structure and FFNN just being a special case of RNN. � (We will see what's up with that in just a moment)

These loops make recurrent neural networks seem kind of mysterious. However, if you think a bit more, it turns out
that they aren’t all that different than a normal neural network. A recurrent neural network can be thought of as
multiple copies of the same network, each passing a message to a successor. Consider what happens if we unroll
the loop in time:

RNN Lecture (Steffen Seitz)

DLBC 2018

This chain-like nature reveals that recurrent neural networks are intimately related to sequences and lists. They’re
the natural architecture of neural network to use for such data.

If one looks what we have explained so far, the unrolling step hints a new freedom domain while designing
neural networks architectures. This leads in general to five different possibility's building up RNN Networks:

There are also special structures like RNN-Autoencoders, where it is sometimes hard to recognize one
structure depicted above, but they are usually just a combination of multiple standard models from above. In
the Autoencoder case the encoder equals many to one and the decoder one to many. Therefore the RNN-
Autoencoder is many to one (1)

In general all of those architectures got their distinguished use cases. And they certainly are used! In the last few
years, there have been incredible success applying RNNs to a variety of problems:

Text Translation Speech Recognition

RNN Lecture (Steffen Seitz)

DLBC 2018

Video Analysis Image Captioning

RNN on non Sequence Data

"Can we use RNN's only, to also cover of Non-Sequence Data?"

Sure! �

For example, we can recognize the one to one network as the standard FFNN, we have been previously used to
recognize digits in pictures or even draw them.

RNN learns to read Mnist numbers by taking a series
of “glimpses”

discriminative Model

RNN learns to draw Mnist numbers also using the
"gimps idea"

generative Model

RNN Lecture (Steffen Seitz)

DLBC 2018

Vanilla RNN in Detail

Enough Introduction, let's get dirty! �

In the previous section we have seen, that an RNN unrolled in time, like in the picture above, takes input values x_t
and converts them into his cell state h_t . This is calculated as a with respect to a Transfer function (in general tanh),
a learnable weight matrix and the previous cell state h_t-1 that it gets to update every time step function is called.

Here is an minimal python implementation of the forward pass step function in a Vanilla RNN:

class RNN:
...
def step(self, x):
update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

You can recognize the equations from above in line 5 and line 7. Thankfully we don't have to define the step
functions and do the routing between different instances of RNN-Cells ourselfs. �

model = Sequential()
model.add(RNN(hidden_size, input_shape=(1, look_back), return_sequences=True)
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

Keras does all the Magic for us, defining the Feedforward path in just one line of code (line 2). Here we constructed a
shallow RNN of one hidden layer with hidden_size cells and look_back timesteps of our data.

The Term return_sequences=True tells Keras to produce an output in the output layer at every time step, which is
important if we want to construct an one to many or many to many model. The Dense layer is just the layer used

RNN Lecture (Steffen Seitz)

DLBC 2018

while doing regression tasks (that's why we use mean_squared_error as loss for the model, too). Just replace
depending on the task you would like to do with our extracted RNN knowledge, e.g. Softmax and Cross-Entropy
Loss in a classification task.

Of course we can stack multiple RNN-Cells on top of each other like
we did in the deep models we have seen so far. Everything we need
to do for adding another RNN-Layer in Keras is:

model = Sequential()
model.add(RNN(hidden_size, input_shape=(1, look_back)))
model.add(RNN(hidden_size))
model.add(Dense(1))
model.compile(loss='mean_squared_error',
optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1,
verbose=2)

But stacking high numbers of RNN-Cells is usually very
uncommon, due to a problem in the gradient flow of the backward
pass of very deep networks.

The so called Vanishing/Exploding Gradient Problem. To
understand the problem in deep RNN networks we have to
understand how the RNN loss is computed.

RNN Lecture (Steffen Seitz)

DLBC 2018

Vanilla RNN Loss

Backpropagation Through Time (BPTT)
In general the loss of an RNN architecture is exactly the same as in the FFNN case, except of the addition, that it is
not only back propagated between layers, but also through time, which is called Backpropagation Through Time
(BPTT).

For one cell we run forward through entire sequence to compute loss, then backward through the entire sequence
to compute gradient

Spatially, each timestep of the unrolled recurrent neural network may be seen as an additional layer and the
internal state from the previous timestep is taken as an input on the subsequent timestep.

Truncated Backpropagation Through Time (TBPTT)
BPTT can be computationally expensive as the number of timesteps increases.

Truncated Backpropagation Through Time (TBPTT), is a modified version of the BPTT training algorithm for
recurrent neural networks where the sequence is processed periodically through chunks of the sequence (k1
timesteps). Therefore the hidden States are carried forward forever but the the BPTT update is performed back for a
equal or smaller fixed number of timesteps (k2 time steps).

RNN Lecture (Steffen Seitz)

DLBC 2018

Vanishing/Exploding Gradient Problem
Beeing computationally expensive while training is not the only problem of deep RNN Networks. �

If input sequences are comprised of thousands of time steps, then this will be the number of derivatives
required for a single weight update. This results in two phenomena:

1. Exploding Gradient
If those derivatives are >1 , this will cause the weights explode (go to overflow) and make the model noisy,
resulting in eventually overshooting local minima.

A solution to the overshooting problem would be Gradient clipping. Therefore we clip the gradients if its
norm is too bigger that some threshold:

RNN Lecture (Steffen Seitz)

DLBC 2018

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
 grad*=(threshold / grad_norm)

2. Vanishing Gradient
If those derivatives are <1 , this will cause the weights vanish (go to zero) and make learning very slow.
Basically the deeper the network the worse it get's and for RNN we not only have "deepnes" in layers... �

With that in mind one can understand why RNN are not supposed to go deep in layers, because using RNN is
supposed to tackle time related dependencies in the data. Instead going deep in layers RNN usually go
deep in time.

RNN's are not the only Cell type that suffers from vanishing gradient. In general all types of neural Networks
using Sigmoid or Tanh Transfer function are affected by the Problem. In FFNN or CNN one can solve the
issue, by evoiding Sigm or Tanh, using different functions like ReLU instead.

Unfortunately in RNN using ReLU results in non converging networks, because ReLUs are unbounded above,
like Tanh/Sigmoid are. The activations (values in the neurons in the network, not the gradients) can in fact
explode with extremely deep neural networks like recurrent neural networks. During training, the whole
network becomes fragile and unstable in that, if you update weights in the wrong direction even the slightest,
the activations can blow up.

Finally, even though the ReLU derivatives are either 0 or 1 , our overall derivative expression contains the
weights multiplied in. Since the weights are generally initialized to be < 1 , this could contribute to
vanishing gradients. For this reason, LSTM was invented.

RNN Lecture (Steffen Seitz)

DLBC 2018

Long Short Term Memory (LSTM)
Long Short Term Memory , or LSTM, is a structure invented to tackle the Vanishing Gradient Problem for RNN.
Therefore it introduces a new RNN architecture, the so called "Gating Structure" depicted below:

The structure is very similar to Vanilla RNN-Networks. But in LSTM two, instead of one, Cell states are preserved and
four gates are introduced:

f: Forget gate

i: Input gate

g: Gating gate

o: Output gate

c_t: Cell state, Internal State

h_t: Hidden State, Output State

Those "gating values" regulate the information flow between the internal Cell State c_t (Output gate) and the
the Hidden State h_t , which is the output given to the next LSTM timestep and the user, similar to the RNN Case.

The internal cell information c_t , Is calculated using all the other gates, deciding

... how much information from c_t-1 to keep (Forget Gate)

... when ever to write information from x_t (Gating Gate)

... how much information from x_t to capture (Input Gate)

Calling the h_t the "hidden" state is sometimes misleading, since the "hidden" state is also propagated as an
output, and therefor not tuely hidden. Instead calling the Cell state c_t a hidden state would appear more
natural, since it is a fully internal (hidden) and therefor hidden in the network. I guess that's what you call a
heritage designing LSTM on top of RNN. �

The key idea, that handles vanishing gradient in LSTM, is the introduction of some kind of Gradient Highway. (Red
Arrow) There the gradients can be backpropagated freely just beeing dependent on the previous cell state and the

RNN Lecture (Steffen Seitz)

DLBC 2018

forget gate output.

Both values are expected to vary in size, not constantly beeing below or above 1 numerically. This makes RNN
robust with respect to the Vanishing/Exploding Gradient Problem.

ℹ� For a detailed proof see this exelent read:
Bayer, Justin Simon. Learning Sequence Representations. Diss. München, Technische Universität
München, Diss., 2015, 2015. - Page 14

Also there is a good quick and dirty explanation, see:

RNN Lecture (Steffen Seitz)

DLBC 2018

Sophisticated RNN Structures
Bidirectional RNNs
Bidirectional RNNs are based on the idea that the output at time t may not only depend on the previous
elements in the sequence, but also future elements. For example, to predict a missing word in a sequence you want
to look at both the left and the right context. Bidirectional RNNs are quite simple. They are just two RNNs stacked
on top of each other. The output is then computed based on the hidden state of both RNNs.

RNN with Attention
Most translation benchmarks are done on languages like French and German, which are quite similar to English
(even Chinese word order is quite similar to English). But there are languages (like Japanese) where the last word of
a sentence could be highly predictive of the first word in an English translation. Short: The structure of Language
can be very different. In that case, reversing the input would make things worse. So, what’s an alternative?
Attention Mechanisms.
With an attention mechanism we no longer try encode the full source sentence into a fixed-length vector.
Rather, we allow the decoder to “attend” to different parts of the source sentence at each step of the output
generation. Importantly, we let the model learn what to attend to based on the input sentence and what it has
produced so far. So, in languages that are pretty well aligned (like English and German) the decoder would probably
choose to attend to things sequentially. Attending to the first word when producing the first English word, and so on.
That’s what was done in Neural Machine Translation by Jointly Learning to Align and Translate and look as follows:

RNN Lecture (Steffen Seitz)

DLBC 2018

Here, The y‘s are our translated words produced by the decoder, and the x‘s are our source sentence words. The
above illustration uses a 2-ayer RNN, but that’s not important and you can just ignore the size of the model, just
remind that the input layer is not shown in this picture, but the output layer is (dark brown squares).

The important part is that each decoder output word y_t now depends on a weighted combination of all the
input states and the last state, not just the last state. The attention weights a are weights that define in how much
of each input state should be considered for each output. So, if a_{1,2} is a large number (about 0.5 in the
picture) , this would mean that the decoder pays a lot of attention to the second state in the source sentence while
producing the third word of the target sentence.

A big advantage of attention is that it gives us the ability to interpret and visualize what the model is doing.
For example, by visualizing the attention weight matrix a when a sentence is translated, we can understand how the
model is translating:

Here we see that while translating from French to English, the network attends sequentially to each input state, but
sometimes it attends to two words at time while producing an output, as in translation “la Syrie” to “Syria” for
example.

Now your probably like:

� But we are here to help! �

Questions?

RNN Lecture (Steffen Seitz)

DLBC 2018

RNN Lecture (Steffen Seitz)

DLBC 2018

	Recurrent Neural Networks (RNN)
	Introduction
	RNN on non Sequence Data

	Vanilla RNN in Detail
	Enough Introduction, let's get dirty! 😉
	Vanilla RNN Loss
	Backpropagation Through Time (BPTT)
	Truncated Backpropagation Through Time (TBPTT)

	Vanishing/Exploding Gradient Problem

	Long Short Term Memory (LSTM)
	ℹ️ For a detailed proof see this exelent read:
	Also there is a good quick and dirty explanation, see:

	Sophisticated RNN Structures
	Bidirectional RNNs
	RNN with Attention
	Now your probably like:

	Questions?

